PREPRINT - accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

Towards High-Performance Virtual Platforms:
A Parallelization Strategy for SystemC TLM-2.0 CPU Models

Nils Bosbach
RWTH Aachen University
Aachen, Germany

Lukas Jiinger
MachineWare GmbH
Aachen, Germany

ABSTRACT

SystemC TLM-2.0 is currently the industry standard for simulating
full Systems-on-a-Chip (SoCs). Although SystemC is designed to
simulate the behavior of complex, parallel systems, the simulation
itself is by default single-threaded. We present a technique to over-
come this performance limitation by parallelizing the CPU model of
a SystemC-TLM-2.0-based system-level simulator, a so-called Vir-
tual Platform (VP). Our solution is fully compliant with the SystemC
standard. To further increase the performance, we developed algo-
rithms for asynchronous DMI pointer caching and we introduced a
new tunable parameter called async_rate. This parameter controls
the frequency used to annotate timing information to SystemC.

Evaluation results demonstrate a significant speedup compared
to sequential execution, with a maximum of 7.8 x achieved for octa-
core VPs on fully parallelizable workloads. For the execution of the
NPB suite on the SIM-V VP, an average speedup of 6.2 x is achieved.
This approach is a promising solution for accelerating VPs while
adhering to the SystemC standard.

CCS CONCEPTS

« Hardware — Hardware-software codesign; - Computing
methodologies — Discrete-event simulation.

KEYWORDS
SystemC, TLM, CPU, VCML, sc-during, parallel

ACM Reference Format:

Nils Bosbach, Niko Zurstralen, Rebecca Pelke, Lukas Jiinger, Jan Henrik
Weinstock, and Rainer Leupers. 2024. Towards High-Performance Virtual
Platforms: A Parallelization Strategy for SystemC TLM-2.0 CPU Models.
In 61st ACM/IEEE Design Automation Conference (DAC ’24), June 23-27,
2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3649329.3658257

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06...$15.00

https://doi.org/10.1145/3649329.3658257

Niko Zurstraflen
RWTH Aachen University
Aachen, Germany

Jan Henrik Weinstock
MachineWare GmbH
Aachen, Germany

Rebecca Pelke
RWTH Aachen University
Aachen, Germany

Rainer Leupers
RWTH Aachen University
Aachen, Germany

cpu o)(mop)(“mop)(cpu1

Worker Worker

SystemC Kernel
Thread 0

Figure 1: Parallelization scheme.

1 INTRODUCTION

In the ever-evolving landscape of embedded system design and
validation, Virtual Platforms (VPs) have become essential tools in
the industry. VPs simulate hardware systems in software, enabling
the testing and execution of unmodified target software even before
physical hardware is available. By parallelizing the hardware and
software development phases, VPs significantly improve the design
process’s efficiency, thereby reducing the time-to-market.

The industry standard for VP development is SystemC with its
Transaction-Level Modeling (TLM)-2.0 extension [9]. TLM-2.0 pro-
vides an abstract communication interface between diverse models.
Through standardization, SystemC-based models can easily inte-
grate into a wide range of simulations. A drawback of SystemC
is that the simulation runs in a single thread. The Discrete Event
Simulation (DES) scheduler of SystemC processes events in se-
quence, limiting the performance gains modern x86 workstations
and comparable parallel host hardware offer.

To test large target-software stacks and perform multiple test
cycles, high performance of VPs is crucial. In recent years, many
different approaches have been developed to parallelize SystemC.
Most of them require manual adjustments such as partitioning or
the use of custom functions which reduces the usability.

To avoid constraining other VP models, we present an approach
that aims at parallelizing the CPU model instead of the entire simula-
tion at once. Since the CPU model is typically the most computation-
heavy model of a VP, parallelizing this model accelerates the entire
simulation. As shown in Fig. 1, each simulated CPU core gets its
asynchronous thread that runs the Instruction-Set Simulator (ISS).
When a CPU needs to interact with other models, the communica-
tion is pushed back to the main thread to remain SystemC compliant.
We present the following contributions:

e CPUmodel parallelization: We introduce a standard-compliant
algorithm to parallelize a SystemC-TLM-based CPU model.

¢ Ensuring thread safety: For non-thread-safe ISSs, we developed
the isolation guard, a deadlock-free synchronization mechanism.

e Optimization of the timing-annotation frequency: Our in-
troduced parameter async_rate steers the frequency the CPU
model communicates timing annotations to the SystemC kernel.

https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0003-3434-2271
https://orcid.org/0000-0001-5156-7072
https://orcid.org/0000-0001-9149-1690
https://orcid.org/0009-0008-0902-7652
https://orcid.org/0000-0002-6735-3033
https://doi.org/10.1145/3649329.3658257
https://doi.org/10.1145/3649329.3658257
https://doi.org/10.1145/3649329.3658257

DAC 24, June 23-27, 2024, San Francisco, CA, USA

e Memory-access optimization: Asynchronous DMI pointer
caching enables direct and fast memory access from a CPU thread.

e Performance evaluation: We show substantial improvements
of up to 7.8 x for octa-core setups of two different VPs.

2 BACKGROUND AND RELATED WORK

SystemC [9] is the current standard for Electronic System Level
(ESL) simulation. It supports different levels of abstraction. Espe-
cially in the early days, Register-Transfer Level (RTL)-like simula-
tions using sc_signals were widely used. During this time, paral-
lelization approaches mainly focused on delta-cycle parallelization
[6-8, 14, 18, 20-22, 24, 31]. A delta cycle is an internal update step
within a time step. Table 1 gives an overview of the different works
and shows their parallelization technique. Since sc_signal-based
simulation is overly detailed and therefore not suitable for high-
performance full-system simulation, we do not provide an in-depth
analysis of delta-cycle-based parallelization approaches.

To achieve higher performance, the level of abstraction can be
increased. When the use of sc_signals is omitted, delta cycles are
eliminated. Instead, modules are connected using the more abstract
TLM-2.0 sockets. Temporal decoupling [9] can be applied, allow-
ing modules to run ahead of the simulation time. This technique
increases the performance by reducing the number of synchroniza-
tions. The downside is reduced timing accuracy. To manage this
tradeoff between performance and timing accuracy, the quantum
parameter can be used. It defines the maximum amount of simula-
tion time a module is allowed to run ahead before synchronizing.

In 2015, Becker et al. showed that delta-cycle-based paralleliza-
tion approaches hardly provide any performance improvement for
temporally decoupled VPs [3]. Therefore, new parallelization ap-
proaches have been developed to execute full quanta of different
models in parallel [4, 16, 17, 19, 23, 28-30]. Various locations where
parallelization can be implemented exist, ranging from the Sys-
temC kernel itself to supplementary libraries, the compiler, and
specialized hardware. A common approach is to create a custom
SystemC kernel with parallelization capabilities [4, 16, 23]. These ap-
proaches distribute the execution of SC_THREADs and SC_METHODs
across multiple threads. The drawback is that mapping SC_THREADs
and SC_METHODs to different workers is a complex task that has an
enormous impact on performance. Therefore, manual handling is
typically necessary, which decreases usability.

Other approaches use the standard kernel but divide the simu-
lation into several parts that run in parallel [19, 28-30]. Each part
has its own sequential scheduler. The challenge is to synchronize
the simulation time and the communication between the segments.

Table 1: SystemC parallelization approaches.

L . SystemC

Work Parallelization Location Compliant
[6-8, 20, 21] Delta cycles Custom kernel ®
[31] Delta cycles Co-simulation ®
[22] Delta cycles Custom kernel, special HW ©
[14] Delta cycles Custom compiler, simulator ®
[18, 24] Delta cycles GPU execution ®
[4, 16, 23] Quantum Custom kernel ©
[19, 30] Quantum Co-simulation ®
[28, 29] Quantum Connected segments ®
[17] Quantum Additional library ©
This work Quantum Parallel CPU model ©

PREPRINT - accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

Bosbach, et al.

In 2013, Moy introduced sc-during [17]. He provides an addi-
tional library, sc-during, that can be used to offload a task to another
thread and annotate the timing of the offloaded task. It does not au-
tomatically parallelize a pre-existing simulation but instead enables
the manual parallelization of specific parts and components.

Most approaches that aim to parallelize an entire simulation at
once have the problem that they impose requirements on other
models. For example, if the SystemC kernel is replaced by a non-
compliant kernel with parallelization capabilities, existing models
must be adapted to work with that specific kernel. After the adapta-
tion, they are no longer standard-compliant, i.e., they do not work
with other SystemC simulations. For this reason, our approach
focuses on the CPU model. We selected the CPU model due to
its ubiquitous presence in VPs and typical high computational de-
mands. By using sc-during as the parallelization technique, the
model remains standard-compliant.

Our parallelization method is integrated into the open-source
Virtual Components Modeling Library (VCML) [27]. VCML expands
SystemC’s functionality by including widely used models, TLM-2.0-
based communication protocols, and fundamental building blocks.
Additionally, VCML incorporates a processor class that can encapsu-
late an ISS into the SystemC framework. Several VP use the VCML
processor class with an embedded ISS as their CPU model. Exam-
ples of such VPs are SIM-V [12] (RISC-V), AVP64 [10] (ARM), and
OR1KMVP [26] (OpenRISC 1000). AVP64 and OR1IKMVP are fully
open-source. This paper aims to enhance the processor class by
incorporating parallelization support. By employing this approach,
all VPs that are using the processor class to incorporate an ISS
experience the advantages of parallelization.

3 PARALLELIZATION APPROACH

As a starting point for our parallelization approach, we use VCML’s

processor class. The aim is to offload the execution of the ISS to a

second thread. For this, sc-during is used. VCML has an internal

implementation of sc-during. It provides the following functions

that we utilize to parallelize VCML'’s processor model:

e sc_async: This method runs a designated function, which is
passed as a parameter, in a separate thread.

e sc_sync: A function, which is given as a parameter, is executed
within the main thread.

e sc_progress: This function can be called from an asynchronous
thread to allow the simulation in the main thread to advance for
a specified time interval.

3.1 Parallel CPU Model

The processor class includes a virtual simulate function utilized
for running the ISS during simulation. This function is executed
numerous times during simulation by an SC_THREAD to operate
the ISS and simulate a specific number of instructions (a quantum).
When the function returns, the elapsed simulation time is annotated
to SystemC. Instead of direct execution within the main thread, the
processor class is modified to utilize sc_async for invoking the
simulate function. This non-blocking function offloads the ISS
execution to another thread, thereby allowing the simulation to
proceed in the main thread. Although this implementation creates
a preliminary parallel setup, it faces two issues:

Towards High-Performance Virtual Platforms

sc_async(simulate)

Quantum q

Cycle-time ¢
Async rate a

Local time ¢
Step ¢

t = min(q/a, (sc_time_stamp()+q-It))
iss(t/c)
sc_progress(t)

It += t

It >= sc_time_stamp()+q

yield()

Figure 2: Asynchronous simulate loop.

(1) When the ISS interacts with other models, it performs the in-
teraction in the asynchronous thread, which is non-compliant
with the SystemC standard. For instance, the b_transport func-
tion utilized for TLM-based communication is required to be
invoked from the main thread.

(2) The simulation time increases only after all ISSs have completed
simulating their specified number of instructions, i.e., when the
full quantum is exceeded. This creates a synchronization barrier
that results in reduced performance.

To address the first concern, it is important to ensure that the
communication between the CPU model and other models is carried
out in the main thread. This communication takes place, e.g., when
the CPU model accesses the memory or peripherals. A typical
example of this is the execution of load and store instructions in the
ISS. To gain access to the memory, the ISS calls the b_transport
function of the processor’s TLM-2.0 socket. Since the ISS runs in
the asynchronous thread, the sc_sync function must be utilized to
redirect the call back to the main thread. This guarantees that other
models are always accessed from the main thread and enables the
use of SystemC’s wait function within b_transport calls. Please
note that for instruction fetching, the used CPU models do Direct
Memory Interface (DMI) accesses from the asynchronous thread.

The second significant challenge arises from synchronization
barriers in our approach. Simulation time progresses only when all
CPU cores complete a full quantum. To address this, we introduce
interruptions in the ISS execution within each quantum. There,
we annotate the simulation progress of the ISS to the SystemC
kernel using the sc_progress function to allow the simulation to
proceed. The number of interruptions per quantum is controlled by
the async_rate, a new optimizable parameter.

Our algorithm for calculating the number of instructions the ISS
should simulate during a call without interruption is illustrated in
Fig. 2. It uses the following variables:

e g: Quantum length for temporal decoupling.

e c: Time per instruction cycle.

e a: Asynchronous interruption rate.

PREPRINT - accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

simulate() Thread ID #
_ dock) S
iss() yes
0 t = tidO)
Processor function
no l
lock
yes
other ISS function c +=1
unlock
no

(a) Deadlock example. (b) The lock function.

Figure 3: Isolation guard.

o [t: Local SystemC timestamp.
e 1:ISS step size.

The algorithm computes the step size t as part of the quantum
q/a unless it surpasses a full quantum’s time. Afterward, the ISS
simulates t/c instructions and communicates the interval to the
SystemC kernel via sc_progress before updating It. If the process
ran ahead of simulation time for a full quantum, it waits for the
other processes to catch up. Otherwise, it proceeds.

3.2 Synchronization Primitives

In our approach, the CPU model only accesses other models from
the main thread to avoid the need for thread safety in those models.
However, problems may occur if the embedded ISS lacks thread
safety. Let us imagine a scenario where the interrupt controller
signals an interrupt to the CPU model while the ISS is active. This
interrupt comes from the main thread, which primarily runs the
simulation. If the ISS is active, two ISS functions run concurrently
in separate threads. This could result in issues if the ISS implemen-
tation is not thread-safe, potentially leading to erroneous behavior.

To address this issue, we suggest implementing an isolation guard
with a locking mechanism before calling an ISS function and an
unlocking mechanism after the call. The interface of the isolation
guard resembles the one of a conventional mutex, but its func-
tionality differs slightly. Using a mutex to protect ISS accesses
can result in deadlocks. A common scenario illustrating the occur-
rence of deadlocks when using a traditional mutex is illustrated in
Fig. 3a. It sketches nested calls of ISS functions with functions of the
VCML processor class in between. When the processor class calls a
function of the ISS, the call needs to be protected by surrounded
lock/unlock calls of the mutex. During ISS simulation, certain
instructions require a call to the processor class to broadcast infor-
mation to all cores of the VP, including its own. An additional call
from the processor model to its ISS, surrounded by lock/unlock,
will fail due to the lock maintained by the simulate function.

To overcome this problem, our isolation guard allows nested lock
calls within the same thread, while blocking concurrent accesses
from different threads. Fig. 3b illustrates our lock mechanism, which
uses two variables. The thread ID ¢ serves to identify the current
lock holder and the counter c¢ tracks nested lock calls. At first, the
isolation guard checks if any thread is holding the lock. If not, it
stores the current thread’s ID in ¢, increments c, and returns. If the
counter ¢ exceeds zero, the lock function checks whether the lock
belongs to the current thread. If so, it increments ¢ and grants a

PREPRINT -

DAC 24, June 23-27, 2024, San Francisco, CA, USA

successful call. Otherwise, if the lock is assigned to another thread,
the current thread must wait until the lock-holding thread releases
all locks using the unlock function. The unlock function simply
decrements the counter c.

Please note that Fig. 3b provides a basic outline of the lock algo-
rithm, and the actual implementation uses a mutex to synchronize
access to t and c. Additionally, optimization is applied to handle
cases where another thread obtains the lock using condition vari-
ables for efficient waiting.

3.3 Asynchronous DMI Caching

In the current implementation, processor calls that access other
models are transferred from the asynchronous thread to the main
thread to comply with the standard, resulting in sequentialized
memory accesses. This sequentialization has a significant impact
on overall performance, especially for memory-intensive workloads.
When the processor model accesses memory, it sends a TLM-2.0
transaction to the memory model. The model can provide a DMI
pointer for further memory access without the need for additional
transactions. VCML’s TLM-2.0 socket of the processor model caches
the DMI pointers, but the cache is accessed only after the read or
write operation is transferred back to the main thread.

To enhance memory accesses, we suggest a method that first
checks the DMI cache from the asynchronous thread before sending
a TLM-2.0 transaction. If the requested address is present in the
DMI cache (a cache hit), direct memory access is performed from
the asynchronous thread. If there is a cache miss, e.g., because the
address corresponds to a peripheral that does not support DMI, a
TLM-2.0 transaction is sent from the main thread. This method en-
ables DMI accesses from an asynchronous thread without the added
expense of transferring requests to the sequential main thread.

4 EVALUATION

To assess the efficacy of our parallelization method, we implemented
the asynchronous simulate loop (as shown in Fig. 2) in VCML’s
processor class. We then evaluated the resulting performance im-
provements using two VPs developed within the VCML frame-
work. The first VP is constructed upon SIM-V [15], a RISC-V simu-
lator. It mimics a minimalistic system that includes a 64-bit RISC-V
CPU with a configurable number of Hardware Threads (harts), a
Platform-Level Interrupt Controller (PLIC), a Core-Local Interrupt
Controller (CLINT), main memory, and a Universal Asynchronous
Receiver/Transmitter (UART) device for interaction and control. The
second VP, the open-source ARMv8 Virtual Platform (AVP64) [13],
features a comparable architecture to SIM-V but with an ARM-
based CPU. It is composed of ARM-based CPU cores, a Generic
Interrupt Controller (GIC), main memory, and a UART interface.
To synchronize accesses to the non-thread-safe ISS of AVP64, an
isolation guard is used for this VP as described in Section 3.2.

Our performance evaluation includes several benchmarks. First,
we analyze the boot process of a Buildroot Linux Operating Sys-
tem (OS). Next, we utilize the NAS Parallel Benchmarks (NPB) [2]
suite based on Open Multi-Processing (OpenMP) [5] to evaluate
performance under various computational workloads. As a third

accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

Bosbach, et al.

lidddlddd

<% <% 3 8 ¢
o @’ s e e ?@]\ P e

Lsequential
parallel

S N R O 0o

Speedup

Benchmark

(a) SIM-V.

:;;;: Si x1|:|x2|:|x4|:|x8
BE 6
I 4 ;
o]
g |
&0
G < W DS
o @’ \4‘2‘?’ @’ \@ \@ \«‘8’ Q@“ @’ ﬂ*""
A Benchmark
(b) AVP64.

Figure 4: Parallelization speedup. The lower part of a bar
shows the worst-case speedup. The full bar represents the
best-case speedup. Quantum: 100 ps.

benchmark, we run a bare-metal Dhrystone [25], executed individu-
ally for each CPU core. This benchmark is chosen for its optimal par-
allelizability, as it includes minimal inter-core communication and
synchronization. Our analysis explores the effect of varied simula-
tion parameters, including quantum, async_rate, and async_dmi.
We conducted all benchmarks on an AMD Ryzen 9 3900X processor.

Fig. 4 displays the possible speedup results that can be obtained
through our parallelization method for various benchmarks on the
x-axis. The graph uses different colors to distinguish the number of
simulated CPU cores. To compute the speedup, one must divide the
execution time of the sequential execution (with async_rate =0
and async_dmi = off) by the execution time of the parallelized
version. As performance is dependent on the values of async_rate
and async_dmi, Fig. 4 demonstrates the minimum and maximum
speedup values for all tested configurations. The bottom sections of
the bars depict the minimum attainable speedup, which corresponds
to the least favorable parameter combinations of async_rate €
{1,5,10} and async_dmi € {on, off}. The full bars represent the
speedup achieved with the most favorable parameters. The selection
of the optimal parameter will be discussed in more detail.

For the execution of the NPB suite, the octa-core VPs achieve an
average speedup of 6.2 x for SIM-V and 4.3 x for AVP64. The lower
speedup of AVP64 is caused by the requirement of an isolation
guard for ensuring thread safety of the ISS. In the context of the
Dhrystone benchmark, the octa-core configurations of both VPs
achieve a maximum speedup of 7.8 x. This equates to a utilization
of 97.5 % of the maximum potential speedup value of 8 x for per-
fectly parallelizable workloads. It should be noted that while the
computational aspects of the benchmark are entirely parallelizable,
there exist synchronized sections in the setup and teardown phases
that marginally decrease the potential for parallelization.

Towards High-Performance Virtual Platforms

@ o 1 5 10

O s—e o @ 0 1 5 10
100 ps —4— —— on—e e
lms—+— —t— off

=N
S
|

«®
Lsequential

parallel
'S
|

e8]

0.25 |
0.125 -4 T T T

Wallclock Time (5
7
!

‘ “ v
% |

Speedup

(=]

2 2 4
Cores Cores

(a) SIM-V execution time. (3): on. (b) SIM-V speedup. (1): 100 ps.

5 100 Zz 8
T 80 g 4 —"
E e glE 2 .
= 60 =S ‘% &
£ ! i
2 1% 0.5 |
E" 20 =4 g 025

0 & 0.125

2
Cores Cores

(c) AVP64 execution time. (3): on. (d) AVP64 speedup. (1): 100 ps.

Figure 5: NPB BT benchmark execution results.
Legend: (1) quantum, (2) async_rate, (3) async_dmi

For predominantly sequential workloads, such as the Linux boot
process, Amdahl’s law [1] specifies that speedup gains from paral-
lelization are restricted. Consequently, the speedup achieved for the
Linux boot is approximately 1. Occasionally, incorporating paral-
lelization approaches can generate performance impediments when
simulating non-parallelizable workloads. This results in a speedup
of less than one. For instance, this is true for the NPB IS bench-
mark’s lowest achieved speedup values. The benchmark’s worst
parameter configuration causes speedups of only 0.25x. Further
analysis will highlight the specific cases where these speed reduc-
tions occur and recommend prevention measures. However, if one
sets the parameters wisely, the speedup is always larger than one.

The range between the highest and lowest speedup values, as de-
picted in Fig. 4, highlights the impact of the parameters async_rate
and async_dmi on overall performance. SIM-V generally achieves
higher speedups compared to AVP64 because it is tread-safe and
therefore does not require an isolation guard. This guard can delay
the execution of a CPU core or even the whole simulation. For exam-
ple, when an interrupt is triggered during core simulation, it must
be waited for the ISS to complete its simulation before signaling
the interrupt, leading to delays and reduced performance.

To gain a deeper understanding of how the async_rate and
async_dmi parameters affect performance, we present the results
of the NPB BT benchmark for SIM-V and AVP64 in Fig. 5. The
benchmark implements a block tri-diagonal solver for a system of
partial differential equations [2]. Out of the NPB benchmarks, it
achieves one of the highest speedups after parallelization for both
VPs. Figs. 5a and 5c illustrate the benchmark’s execution time for
varying numbers of simulated cores, different quanta, and different
async_rate parameters while keeping async_dmi activated. Dur-
ing sequential execution (represented by blue lines, async_rate =
0), the wallclock time experiences a slight increase as the number
of simulated cores increases. This is due to the overhead generated

PREPRINT - accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

@ oo 1 5 10
0 is—e . @ 0 1 5 10
100 pis —— —— on—&— —o—
lms—+— —— off

o]

Lsequential

0.25 |7~

0.125

Speedup

(=]

Wallclock Time (s
[)
| |
1/(’%(
= tparallel
(=]
[BN)
[

—_
-]

2 4 2 4
Cores Cores

(a) SIM-V execution time. (3): on. (b) SIM-V speedup. (1): 100 ps.

Z15 | I’g% i
(9] s 1
Elo—‘\\' HENEE -
= — \$. I I,Q;’zé@
3 5 —=- s 05
= T 0.25 {4t
= 0 & 0.125

2 2
Cores Cores

(c) AVP64 execution time. (3): on. (d) AVP64 speedup. (1): 100 ps.

Figure 6: NPB IS benchmark execution results.
Legend: (1) quantum, (2) async_rate, (3) async_dmi

by distribution and synchronization. For parallelized execution, the
needed wallclock time is reduced for an increased amount of cores.

It is noticeable that the influence of the async_rate parameter
is comparable to the one of the quantum parameter as shown in
Figs. 5a and 5c. Together, these parameters determine the number of
cycles that the ISS simulates in a single call. The key differentiation
is that, following an interruption from async_rate, the simulation-
time progress is annotated to the SystemC kernel without blocking.
At the end of a quantum, in contrast, the ISS’s execution must be
halted until the rest of the simulation catches up.

While multiple combinations of quantum and async_rate may
result in the same number of instructions the ISS needs to simu-
late in a single call, their performance may vary. For example, the
combination of a 100 pus quantum and an async_rate of 1 (refer to
Figs. 5a and 5c, diamond shape markers on green line) results in
a 100 ps simulation interval for the ISS. The identical interval may
be accomplished by utilizing a 1 ms quantum and an async_rate
of 10 (see Figs. 5a and 5c¢, orangish line with straight indexes). The
100 pus quantum and async_rate of 1 results in marginally superior
performance under these circumstances.

To select the optimal value for the async_rate parameter, we
suggest following a similar approach to selecting the quantum
value. The most straightforward method is to evaluate different
values and select the parameter that yields the best performance for
the workload. More advanced techniques, such as adaption during
simulation [11] or analytical evaluations [32], are also possible.

Figs. 5b and 5d illustrate the speedups attained for various com-
bindations of async_rate and async_dmi, using a quantum of
100 ps. It is noteworthy that when the async_dmi parameter is dis-
abled, the performance gains are restricted. This constraint occurs
because, in such cases, all communication between the CPU and
other models is serialized by transferring the workload back to the

DAC 24, June 23-27, 2024, San Francisco, CA, USA

main thread. Therefore, it is clear that the activation of async_dmi
is crucial for achieving significantly improved performance values.

Fig. 6 illustrates the performance values of the NPB IS bench-
mark, which applies the memory-intensive bucket sort algorithm
to integers [2]. Compared to the BT benchmark, shown in Fig. 5,
which demonstrates a workload that attains high speedup values
when parallelized, the IS benchmark is an example of a workload
with a lower speedup. In Figs. 6a and 6c, it is evident that the sim-
ulation becomes more sensitive to the chosen async_rate as the
number of cores increases. This increased sensitivity is due to a
larger number of threads, where the synchronization frequency
significantly affects performance. Furthermore, Figs. 6b and 6d em-
phasize the crucial significance of async_dmi for memory-intensive
workloads. Disabling async_dmi results in a staggering 75 % per-
formance drop compared to the sequential execution. This decrease
can be attributed to a large number of memory accesses during
the benchmark, which causes a significant portion of the simula-
tion to return from the asynchronous thread to the main thread.
As a result, the simulation reverts to a sequential execution mode,
accompanied by increased overhead due to the involvement of mul-
tiple threads and their associated synchronization requirements.
Enabling async_dmi proves to be instrumental in preventing slow-
downs and facilitating fast, parallel DMI accesses, ultimately en-
hancing the overall performance of the simulation.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a robust parallelization technique for
SystemC-TLM-2.0-based VPs that significantly enhances simula-
tion performance. Our approach optimizes CPU-model execution
within VPs by utilizing the sc-during method and asynchronous
DMI pointer caching, while still ensuring adherence to the SystemC
standard. We introduce the async_rate parameter, providing fine-
grained control over the simulation’s timing-annotation frequency.
The implementation of our isolation guard guarantees thread safety
for embedded ISSs that do not provide those capabilities. By imple-
menting the approach in the processor base class of the modeling
library VCML, all VCML-based VPs profit from parallelization.

Our evaluation presents noteworthy speedup outcomes, achiev-
ing a maximum speedup of 7.8 x on an octa-core VP for highly
parallelizable workloads. For the NPB suite executed in a Linux
environment, an average speedup of 6.2 x for the RISC-V VP SIM-V
can be reached. These results demonstrate the significant perfor-
mance advantages of our approach, indicating the potential for
expediting the simulation of intricate VPs.

As a next step, the creation of automated parameter tuning mech-
anisms that can dynamically adjust simulation parameters such as
async_rate and async_dmi could heighten the adaptability and
effectiveness of our parallelization approach. This would guarantee
top-notch performance across a variety of workloads.

REFERENCES

[1] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
Jjoint computer conference (AFIPS ’67 (Spring)).

[2] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. 1995. The NAS parallel benchmarks 2.0. Technical Report.

[3] Denis Becker, Matthieu Moy, and Jerome Cornet. 2015. Challenges for the
parallelization of loosely timed SystemC programs. In 2015 RSP.

[4

[12

(13

=
2

[20

[21

[22

)
&

[24

[25

[26]
[27]

(28]

[29

@
=

[31

[32

PREPRINT - accepted by the 61st ACM/IEEE Design Automation Conference (DAC ’24) - DOI: 10.1145/3649329.3658257

Bosbach, et al.

Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, and Matthieu Moy. 2021.
Standard-compliant parallel SystemC simulation of loosely-timed transaction
level models: From baremetal to Linux-based applications support. Integration
79 (July 2021).

Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. 2001. Parallel programming in OpenMP. Morgan kaufmann.

Bastien Chopard, Philippe Combes, and Julien Zory. 2006. A conservative ap-
proach to systemc parallelization. In Proceedings of the 6th ICCS. Springer-Verlag.
Moo-Kyoung Chung, Jun-Kyoung Kim, and Soojung Ryu. 2014. SimParallel: A
high performance parallel SystemC simulator using hierarchical multi-threading.
In 2014 IEEE International Symposium on Circuits and Systems (ISCAS). 1472-1475.
Philippe Combes, Eddy Caron, Frédéric Desprez, Bastien Chopard, and Julien
Zory. 2008. Relaxing Synchronization in a Parallel SystemC Kernel. In 2008 IEEE
International Symposium on Parallel and Distributed Processing with Applications.
IEEE Standards Association and others. 2012. IEEE Standard for Standard SystemC
Language Reference Manual. IEEE Std 1666-2011 (Jan. 2012).

Lukas Jiinger. 2023. AVP64. https://github.com/aut0/avp64

Lukas Jiinger, Carmine Bianco, Kristof Niederholtmeyer, Dietmar Petras, and
Rainer Leupers. 2021. Optimizing Temporal Decoupling using Event Relevance.
In Proceedings of the 26th Asia and South Pacific Design Automation Conference.
Lukas Jiinger, Jan Henrik Weinstock, and Rainer Leupers. 2022. SIM-V: Fast,
Parallel RISC-V Simulation for Rapid Software Verification. In Proceedings of
DVCon Europe 2022. Munich.

Lukas Junger, Jan Henrik Weinstock, Rainer Leupers, and Gerd Ascheid. 2019. Fast
SystemC Processor Models with Unicorn. In Proceedings of the Rapid Simulation
and Performance Evaluation: Methods and Tools (RAPIDO °19). ACM.

Guantao Liu, Tim Schmidt, Zhongqi Cheng, Daniel Mendoza, and Rainer Dmer.
2019. RISC Compiler and Simulator, Release V0.6.0: Out-of-Order Parallel Simu-
latable SystemC Subset. Technical Report CECS-TR-19-04, Center for Embedded
and Cyber-physical Systems, University of California, Irvine (2019).
MachineWare. 2023. MachineWare. https://www.machineware.de/

Aline Mello, Isaac Maia, Alain Greiner, and Francois Pecheux. 2010. Parallel
simulation of systemC TLM 2.0 compliant MPSoC on SMP workstations. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).
Matthieu Moy. 2013. Parallel programming with SystemC for loosely timed
models: A non-intrusive approach. In 2013 DATE. IEEE.

Mahesh Nanjundappa, Hiren D. Patel, Bijoy A. Jose, and Sandeep K. Shukla. 2010.
SCGPSim: A fast SystemC simulator on GPUs. In 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC).

Christian Sauer, Hans-Martin Bluethgen, and Hans-Peter Loeb. 2014. Distributed,
loosely-synchronized systemC/TLM simulations of many-processor platforms.
In Proceedings of the 2014 Forum on Specification and Design Languages (FDL).
Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann.
2010. parSC: Synchronous parallel SystemC simulation on multi-core host archi-
tectures. In 2010 CODES+ISSS.

Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid,
Laura Tosoratto, Alessandro Lonardo, Dietmar Petras, and Thorsten Groétker. 2013.
legaSCi: Legacy SystemC Model Integration into Parallel Systemc Simulators. In
2013 IEEE International Symposium on Parallel & Distributed Processing.

Nicolas Ventroux, Julien Peeters, Tanguy Sassolas, and James C. Hoe. 2014. Highly-
parallel special-purpose multicore architecture for SystemC/TLM simulations.
In 2014 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV).

Nicolas Ventroux and Tanguy Sassolas. 2016. A new parallel SystemC kernel
leveraging manycore architectures. In 2016 DATE. IEEE.

Sara Vinco, Valeria Bertacco, Debapriya Chatterjee, and Franco Fummi. 2012.
SAGA: SystemC acceleration on GPU architectures. In DAC.

Reinhold P Weicker. 1988. Dhrystone benchmark: rationale for version 2 and
measurement rules. AcM SIGPLAn notices 23, 8 (1988).

Jan Henrik Weinstock. 2023. OpenRISC 1000 Multicore Virtual Platform
(orlkmvp). https://github.com/janweinstock/or1kmvp

Jan Henrik Weinstock. 2023. Virtual Components Modeling Library (veml).
https://github.com/machineware-gmbh/veml

Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Dietmar Petras, and An-
dreas Hoffmann. 2016. SystemC-link: Parallel SystemC simulation using time-
decoupled segments. In 2016 DATE.

Jan Henrik Weinstock, Luis Gabriel Murillo, Rainer Leupers, and Gerd Ascheid.
2016. Parallel SystemC Simulation for ESL Design. ACM Trans. Embed. Comput.
Syst. 16,1 (Oct. 2016). https://doi.org/10.1145/2987374

Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid,
and Laura Tosoratto. 2014. Time-decoupled parallel SystemC simulation. In 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE).

Hao Ziyu, Qian Lei, Li Hongliang, Xie Xianghui, and Zhang Kun. 2009. A Parallel
SystemC Environment: ArchSC. In 2009 15th International Conference on Parallel
and Distributed Systems. IEEE, Shenzhen, China.

Niko Zurstraflen, Ruben Brandhofer, José Cubero-Cascante, Nils Bosbach, Lukas
Jiinger, and Rainer Leupers. 2024. The Optimal Quantum of Temporal Decoupling.
In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC).

https://github.com/aut0/avp64
https://www.machineware.de/
https://github.com/janweinstock/or1kmvp
https://github.com/machineware-gmbh/vcml
https://doi.org/10.1145/2987374

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Parallelization Approach
	3.1 Parallel CPU Model
	3.2 Synchronization Primitives
	3.3 Asynchronous DMI Caching

	4 Evaluation
	5 Conclusion and Future Work
	References

